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SUMMARY

This work is concerned with the transient dynamic response of a
periodically ring-reinforced, infinitely long, circular cylindrical shell
to a uniform pressure suddenly applied through the surrounding acoustic
medium. The incident particle velocity is zero and the rings are assumed
to be slightly flexible.

A classical theory of the Donnell type is used to analyze the
shell while the fluid is described by the linear acoustic field equation.

The solution is obtained by assuming a power series expansion in
the ring stiffness parameter and utilizing a technique which reduces the
transient dynamic problem to an equivalent steady-state formulation.

Numerical results are presented for a steel shell immersed in

salt water for different ring spacings.

For the case of rigid rings, a cylindrical and plane wave approxi=

mation was also used to represent the fluid field. It is shown that the
cylindrical wave approximation yields reasonably accurate results.
Flexible ring results, although limited, indicate that undamped

or nonradiating components of the shell vibration are activated.




LIST OF SYMBOLS

cross-sectional area of ring
radius of the median surface of the shell
acoustic velocity of the fluid
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longitudinal wave velocity in the shell [cs= (Es/ps)
longitudinal wave velocity in the rings [cr= (Er/pr)]/z]
modulus of elasticity of shell and ring material, respectively
shell thickness

Heaviside step function

nth order Hankel functions of the first and second kind,
respectively

shell parameter [hKh = IZ(E)Z(l - vz)]

nth order modified Bessel function of the second kind
distance between supports

nondimensional support spacing (2L = ZL*/a)

incident fluid pressure

total pressure acting on shell

radial coordinate

nondimensional radial coordinate (r ='r*/a)

Laplace transform parameter

time

forcing function period

radial shell displacement

nondimensional radial shell displacement, (w = w*/a)

axial coordinate
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nondimensional axial coordinate

eigenfunction

ring stiffness parameter [B = (%;9(359

eigenvalue
Poisson's ratio
fluid mass density
ring mass density
shell mass density
. . . ct
nondimensional time (1 = :;)
fluid potential function

free vibration frequency
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complex conjugate

d

= ()

derivative with respect to argument

transformed function
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1. INTRODUCTION

Problems concerned with the vibrations of cylindrical shells in
vacuo or immersed in a fluid medium have achieved a good deal of attention
for more than a decade. The free vibration of ring-reinforced cylindrical
shells in vacuo was considered in papers by Bleich], Gondikasz, Galletly3
and Garnet and Go]dbergu. Bleich and Baroéiinvestigated the free vibration
of an unreinforced cylindrical shell immersed in a fluid. The steady-state
forced vibrations of infinitely long shells with periodically spaced rigid
septa and reinforcing rings, surrounded by an infinite acoustic fluid was
analyzed by Junger6.

The interaction of a plane shock wave and an infinitely long
cylindrical shell immersed in an infinite fluid medium was studied in
papers by Baron7, Mindlin and B]eich8, Carrier9 and Paytonlo. In the
first two articles, approximations of the acoustic field equation resulted
in the assumption that each element radiates a plane wave into the surround-
ing fluid. For this approximation the error increases as time increases.
Haywood]l solves the same problem assuming a cylindrical radiated wave.

Herman and Klosr'ier]2 found an exact solution to the transient
problem of an infinitely long, cylindrical shell immersed in a fluid
medium, subjected to an engulfing wave. In their solution the assumption
that the pressure wave had a harmonic spatial variation along the shell
axis enabled them to quickly eliminate the axial space coordinate from

consideration and emphasize the time response. The solution was then

obtained by means of a Fourier transformation on the time coordinate.



The present study investigates the transient response of an
infinitely long, periodic ring reinforced, cylindrical shell subjected
to a suddenly applied pressure through the surrounding acoustic medium.
The pressure is assumed constant along the shell axis and the rings are
assumed to be slightly flexible. The solution is obtained by means of a
technique in which the transient problem is reduced to an equivalent steady-
state problem. This method was recently demonstrated by Garnet and
Crouzet-PascaI]3, Klosner and Berglund]u, and was previously suggested

by Bisplinghoff, Isakson and Pian]5.



11. GOVERNING DIFFERENTIAL EQUATIONS

Consider an infinitely long, circular, cylindrical shell with flexible
ring supports periodically spaced at distances of 2" (Fig. 1). The shell is
immersed in a fluid and is initially at rest. At some time (vt = 0) there is a

sudden rise in the surrounding fluid pressure, given by

P, = pH(7) (1)
where H(t) is the Heaviside step function; the incident particle velocity is
assumed to be zero.

The structural response is described by the following Donnell-
type shell equation

L

LI»LZ _Ll-_a__g_
+ LK w + 4K (C ) Wt T LK (h)Es (2)

w
5 XXXX
s

for which the axial inertia term has been neglected and the longitudinal
stress resultant is assumed to vanish; c is the acoustic velocity of the
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fluid and [cS = (Es/ps) is the longitudinal wave velocity of the shell.
The nondimensional distances, displacements and time are x = xx/a, r= rx/a,
L= Lx/a, w=w/aand T = ct/a. The starred coordinates and displacements

are indicated in Fig. 1; t = time.

The shell boundary conditions are

w%(m1)=wﬂmxw;ﬁ==%AgT)=0 (3)
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where the ring stiffness parameter

2 E.
h h 1
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and A is the cross-sectional area of the ring; ES;Er = Young's modulus of

the shell and ring. For a rigid ring p = 0 and Eq. (3a) simplifies to

w(k,7) = 0
The shell is assumed to be at rest initially, i.e.,
w T(x,O) = w((x,0) =0 (5)
b4

The fluid field is described by the axisymmetric acoustic potential

field equation

O __+10 +9 =0 (6)
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where ¢ is the velocity potential function. At the shell-fiuid interface

(r = 1) the radial velocity of the shell and fluid must be equal, so that
_ L
W,T(X:T) = 3¢ @)r(];X:T) (7)

The vanishing of the radiated velocity and pressure at 7 = 0 requires that



@(r,x,0) = CP’T(I‘,X,O) =0 (8)
while the symmetry conditions of the problem lead to
CP’X(F:O,T) = CP’X(I’,L,T) =0 (9)

The pressure p acting on the shell is the sum of that exerted

by the incident and radiated acoustic waves, i.e.,
- o1}
p = P () + 220 (1,x,7) (10)

Power Series Expansion

For an almost-rigid ring stiffened shell, B8 <« < 1, the solution
can be expressed in terms of a power series expansion in B. Thus the radial

shell displacement can be represented by the following series

Wx,) = W (6,7 + B, (1) + Bowy (1) + 70t # BN (k) + e

["]80E

Bmw (x,7) (1)
m=0 m .

For the acoustic potential we may similarly write
2 .
o(r,x,7) = CPO(F,X,T) + Bcp‘(r,x,’r) +B CPZ(UX:T) o 5m@m(r;X}T) +

= £ 8" (x,7) : (12)
m=0




If Eq. (11) is to be a valid representation of w, then it is neces-
sary that %}x,r) and wﬂ(x,f) (m=1,2,3,""*o) satisfy the equations given

in the preceeding section. This leads to the following system of equations

4 b, ¢ 2 L4 al pe
W £ B+ K T = W@ [ i) + o, (k1] (13)
5 XXXX s sTT s
W (0,7) = W (L,t) = Wy (0,7) = wo(L,T) =0 (13a)
s X PR 5 XXX
1
WO (X)T) = a_c- CPO (]:X)T) (l3b)
7T s r
Wy (x,0) = wo(x,O) =0 (13c)
5T
and
w + hKuw + MKA(-EQZW = th(éo‘L Ei o (1,x,71) (14)
m m c m B h’"E a "m i
5 XXXX s sTT s 5T
W (0,7) = W (L,t) = W (0,T) = 0O (14a)
5 X S X 5 XXX
. 2
w (L) + (%W (L1) =w o (L,7) (14b)
r ,TT 5 XXX
1
Wm (x,7) = ;(P (])X:T) (1h4c)
s > r
Wm (x,0) = Wm(x,O) = 0 (m=1,2,3"""x) (14d)
5T

The first set of equations (13 represents the formulation of the rigid ring

problem (B = 0), for which the ring displacements vanish [WO(L,T) = 0].



The second set of equations (14) are recurrence expressions [see Eq. (14b)]
for the mth term of the series expansion of w.
The nonhomogeneous boundary condition of Eq. (14b) can be removed

by the following transformation

1l

wm(x,T) um(x,T) + Fm(r) (15)

where

|
(@]

Um(L:T) =

Eqs. (14) are thus recast as follows:

L b, c\2 ] PC L
u + LK u + LK (EEQ u = th(ﬁQE—'-;'q%) (1,x,7) - LK {Fm(r)[]
5 XXXX s 5TT s 5T
< .2
- D (L) (16)
s 5 XXX
gy @D = (07 = (L) = g (L) = 0 (162)
§ X 5 XXX yX
]
u, o+ Fm = =@ (1,x,71) (16b)
> T s T s F
2
F o+ (5°F = w (L,7) = u__ (L,7) (16¢)
m Cr m,TT m ],xxx ’ m l,xxx
Um(X,O) = Um (X:O) = Fm(O) = Fm (0) =0 (m = ];2:3).”0") (]6d)

»T )T



Finally we have that each coefficient of the series expansion of

the acoustic potential must satisfy the following set of equations:

] _
P T % T % = (7
,Tr ,r 5§ XX 5T
(Pm (r}O)T) = (Pm (r)L:T) =0 (m = 0)]:2)“.‘”) (]73)

s X s X



111. STEADY-STATE FORMULATION

The reformulation of the transient dynamic problem to an equi-
valent steady-state problem is accomplished by replacing the Heaviside
function in equation (13) by a periodic forcing function, F(t) (Fig. 2),
constructed by superimposing appropriately signed and time shifted Heaviside
functions]u. The period 2T must be chosen so that at 7 = 2nT (n = 0,],2,3,"')
the initial conditions of the shell are satisfied, that is, the velocity and
displacements vanish. For damped systems which are brought to a state of
rest within the interval ?r the abov% conditions will be achieved if T/2 > ?r'
For systems which contain undamped components, that is for those that are
brought to a state of periodic motion of period ;; the initial conditions will
be satisfied if (T/2) = nt (n = 1,2,3,***), where nT must be at least as

great as the time necessary for decay of the transient motion.

Thus the acoustic pressure of Eq. (10) is replaced by

pc
p= POF(T) + ? CP,T(]:X:T) (18)

where the complex Fourier series expansion of F(t) is

w - _iLHT_ l__k_'l_TT_
F(r) = X ﬁ; {[sin %F + % (1 - coskr)le T +[sin %? - % (1-coskr) le T }
k=1,3,5
(19)

The form of the acoustic potential which is periodic in time and satisfies

the field equation (17) and the boundary condition (17a) is




- - _ ikt i kTt
® = T [ b Rnt(r)cos E%i e L T Egt(r)cos ﬂ%é e T ]
k=1,3,5 n=0,1,2 n=0,1,2
(20)
where
2. m m
d"R dR
nk ] nk kiry 2 Nry2,, m
+ = + [ ()" - (= =
2 T o (&)™ - CPTIR =0 (21)
r
and
2= m =m
dR dR
nk 1 “nk kiry 2 nry2.sm
drl T [ T) ( L) ]Rnk =0 (22)
r
(m =0,1,2, )
The forms of RnE and ﬁ;t vary in different regions as follows:

Case A: (kIT/T)2 - (mT/L)2 = 2

nk >0
For an outgoing wave,
m_,om, (1) . =m __.m, (2)
Rok = Ankfo ~ (77) ) Rok = Baktlo (7"

(1) and Hj(z) are Hankel functions of order j of the first and second

where H.
J

kind.
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Case B: (n7r/L)2 - (kTr/T)2 =B 2 >0

nk

For an exponentially decaying potential field

m_,om, (1),. . =m _m, (1),
Rok = A Ho ('Bnkr) ? Rnk - BnkHo (IBnkr)

nk nk

Case C: (mr/L)2 - (krr/T)2 0

I

m m .Tm_ . m .
nT/L), Rnk = Ank nr 3 Rnk = Bnk snr. But this

For this case (k
violates the far field condition and thus the chosen period 2T must be such

that the ratio nT/L is not equal to an odd integer, i.e.,

%F.¥ k (k = ]:3:5)°°°“9

Thus the final form of the potential function can be expressed as

(1) _ ikt
_ = : m Ho (7nkr) nrx T
¢ (rx,1) = T LT AL cos =~ e
k=1,2,5 020 Ty (g 1)
(2) ikt
o H (7 .r) -
+ ¢ B ° nk cos MX ¢ T } )
n=0 nk (1) L
Ho (B, )
for
2 2 2
E? - @2 -y >0
(m = 0,112:..'w) (23)
nwy 2 kmy2 2
(L) = (T) = Bnk >0



Iv. SOLUTION OF THE SHELL EQUATION

For the rigid ring problem, described by Equation (13), with

boundary conditions (13a), we assume a solution of the form:

© o Lok ikgt
Wb, = T (TS Xke T+ Tax e (28)
k=1,3,5 j=14% =1
where
coskjL
Xj(x) = cosij - EBZFX}I coshxjx (25)

are the mode shapes for the free vibration of a periodically (rigid) ring-
reinforced infinite cylindrical shell in vacuo [see Appendix (A)] and are
solutions of the differential equation

v b
Xj (x) + kj Xj(x) = 0 (26)

The corresponding eigenvalues xj are obtained from the following transcen-

dental equation
taanL + tanhXjL =0 (27)

The substitution of Eqs. (19), (23) and (24) into Eq. (13) yields
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el _h"”‘,_": m
T
z o {ze % Ve +2"w Wege T3
k=1,3,5 j=1 ¥ J i i X
o foa) _M. o0 ‘k’n_’r
+ ,-#Ku z { k. jk X (X)e T + 'ﬂ,kox,(x)e T }
k=1,3,5 j=1 ] j=1 4% J
o Jdge ke
- LLK”(CC—)Z z (I—q'[){ 2 £ X.(x)e T 4+ 5 Tl-kox-(X)e T )
s k=1,3,5 =1 J j=1 Ak )
. _ ikgrt
] .ok T
= hK G ) T = {[sin + —~ (1-coskr) Je
B k=1,3,55T 2 2
ikt
+ [sin %E - % (1-coskr)le | }
! .
pe - ikr (o o Ho( )(7 k) nrx l$11
-? z —T—{ZAnk 0s L [
k=])5)5 n=0 H (])(.
o IBnk
- @, ) iLixd
- ¥ B ko nk™ L eos E%i e | } (28)
"0 " D g,
o} nk

where ( )' represents the derivative with respect to the argument. Expanding

the terms of the right~hand side of Eq. (28) into a series of the eigen=

functions Xj’ we obtain the following



4 sin A.L
J

baPo 1 . kr 1. _ o .o
LK (h)Es e [sin 7t 3 (1-coskr)] = jE] IJ.k XJ(X)
bayPo 1 ok 2,0
bK (h)Es i [sin 5= = 3 (I-coskr)] = jzl ik Xj(x)
and
nrx o
cos = == .§ anXJ(x)
j=1
where
hxiusink.L cos nr
an - L b I cosh:L 2
[Xj - ]hjL[(coshij) + 1]
o
I.
Jk p .
) = hKh(ﬁ)—§'£; [sin %g'i % (1-cos kir)]
ij ij[(

(29)

(30)

(31)

(32)

(33)

Upon substituting Eqs. (26, 29-33) into Eq. (28), we obtain the following

system of equations

L L

A, + LK
[ J jk s

pC . «© o}
- w2 0L p 0 st @ U 5 oa o
> ! H (])(ie
(o]

(34)

nk)

4.

nk)



L L

[xj + LK c)?

)

C
)

- uk*(

kry24.. 0

15.

where (j=1,2,3,: " o ;

k:]}5)5} ”."0)

In a similar manner the interface boundary condition (13b) may be recast as

o T
éjk = " Tkrac °
n=
and
o T c
"jk 7 Tkrac  Z

Utilizing the identity

c2 0
p Pg. 2
—- (O (De
s Ps s
and noting that 16
(1)
Ho (7nk) =T

i e o= -w, Mae )

7nkHc>l(])(7

p C
= (;;9(;;9

(36)

(37)

(38)

(continued on next page)



Hol(Z)(7hk) - H](Z)(ynk) (>9)

Equations (34-37) can be combined to yield:

0 s

n

(1)
. 7o)
T {[kju+hKu-hKh(éi)2(%¢)2]{ " ‘ }

(1)
H (7 )
p o} nk Ch:T °
- ' @) (=) (f)zél)z{ }} T At 1jh (v0)
’ ’ Ho(])(iank)

. (2)
AL VA

(Ot (9 ("T—”)Z]{ " " }

] ENURRY TN

™~ 8

n=0

an 0 o

Ho(Z)(7nk) C
} _— (b1)

ay, Py ¢
- hKu(F)(Ezﬁ(zzﬁz(%laz{ Tkrac  Snk ik

Ho(])(isnk)

(j=]:2:51...w 5 k:]:515}°"m)

From Eq. (33) we note that IjE is the complex conjugate of JJE’ or

o_ "o
Tik = dik



where (7) represents the complex conjugate. Also, by definition

1 W 0= @
(). 2

n g ) = - 2K )

Hl(])(ienk) = - TZF Ki(B,,)

Thus by observing Eqs. (40) and (41) we conclude that

2 2 2
- (HTE) - (B - Yok > O
o -
Bk = * Aqie o+ for (v2)
nry2 | k2 . 2
R oL
and from Egs. (36) and (37) we observe that
M °_ E’ for ¥ 2 >0 and B 2 >0 (43)
'k jk ’ nk nk

that is, for both ranges we have shown that njko is equal to the complex
. o
conjugate of gjk .
As a consequence of equation (43), the expression for the deflection

function (24) may be rewritten as

o} T
= . L].).I,
wo(x,T) 2k=],§,5 [jE] Re(éjk e )XJ(x)] (44)

where Re( ) represents the real part of the complex function.



The complex coefficients gjz can be determined from equations
(36) and (37).

It should be noted that Eq. (40) represents an infinite set of

algebraic equations for the unknown coefficients Anz (n=0,1,2,°°",k=1,3,5,""

which must be solved by truncating the series.

.)’



V. HIGHER ORDER TERMS

Higher order terms in the shell deflection series (11) are de-
fined in equation (15) and are obtained by solving the set of equations
(16). A comparison of the rigid ring equations (13) and (13a) to equations
(16) and (16a) reveals a term for term correspondence, with differences
appearing only on the right-hand sides of the differential equations (13)
and (16), i.e., the incident pressure term is replaced by the term
-hKh{Fm(T)[I-(;IQZ] W (L,t)}. Thus we see that the mth term of

s 5 XXX
the expansion of the radial deflection is determined from the shear in
the shell at the ring support for the (m-l)th term. 1t follows therefore

that a solution to equation (16) which satisfies the boundary conditions

(16a) can also be written in the form

- - _ ikt . ikt
um(x,T) = PN [ © é.ﬁ X.(x)e T + 5 n.z Xj(x)e T ]
k=1,3,5 j=1 % j=1

(m=]:2:5:.”°°) (M’S)

Equations (16) and (16¢) both contain the third derivative of
the (m-l)th term of the radial displacement evaluated at x = L. The deter-
mination of this derivative by direct differentiation yields a slowly con-
verging series. To eliminate this numerical difficulty, the differential

equation (16) is integrated. The result is




20.

W (L) = ¢ [{uk [1-(E % 2602 5 T L sin L
5 XXX k=1,3,5 j=] J J ]
4 a,P¢ (1) -
@2 ik -1y, (1 T
BK (h)aES T Aok LHo (7ok)}e
m 1 2 .
+ { 4K [1- ( ) ( ) T sinn L
. J
J= l ]
y . 0C ) ihﬂ'}
ay"~ ikr ,m-1 2 T
+ 4K (h)aES T Bok LHo (7ok)}e
- b'K L{F (1 - (—) ]+ Wm_2 . (L,T)} (m=2,5,'°'°°)
s 5 XXX
(L6)
and for m = 1
[« ) 2
Wy (L,7) = X {-uK [1- ( ) ) ] k)\'—smk L
S XXX k=1,3,5 j= IJ j ]
oc _ kT
sty ik, 0 (1) T
4K (h)aES T Aok LHo (7ok)}e
+ [-hK*1- (S ) (52 ka—ssnij

J

(continued on next page)
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C . e
£ ugt@ : K g © LHO(Z)(yok)}e T J-+ hKh(ﬁ)gg LF (1) (47)
S

The expansion of the preceding equations into a series of the eigenfunctions

yields
c - . ikrt
FEO-DT+w o (L) =-—p 3 [ zx WX (x)e
s 5 XXX hK k=1,3,5 j=1 J
- i kit
+ T Jn'lX(X)e T ] (m=];2)3)...°°) (’48)
j=1 JKJ
where
m+1 ki 2 S oom 2 .
.= hK = .
IJk { hK [1+( s) ()] JEIJk Xj S|n¥JL
- _Em (1) L
uK ( ) 3 A k LH_ (yok)}c . - kK LIjk
mt1 kT 2 2
e = - wK* {- hK [1+( S) ) ]Z m, k sink; L
ha 7 kg gmo, (2) by ym
+ 4K (h)aES T Bk UH, (7ok)}coj - 4K Lij (49)

(m=0,],2,°'°m)

and from Eq. (32)
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4 sinij
- (50)

Coj cosi.L
XjL[(coshAjL) 1]

(Note that expressions for Ijﬁ and in are found in equation (33)). The

solution of Eq. (16c) which satisfies the initial conditions (16d) can be

written as

® _ Ak
F (1) = - T 1 S . m T
m ; [Z 1.7X.(x)e
k=1,3,5 ) Mo (Crv2 €32 kry2, P20 ik
2% W 2- €95 (2 EDT 5
s r
o JkrT
+ % 0 (e T ] (m=1,2,3," ") (51)
j=1 JK J
By substituting equations (20, 45, and 48) into equation (16) we
obtain

H (])(7 )
¥ Yoty m g ™y K@ ik 3 oam {° iy }0
(A, K" - — E., -1, S)— X h =
it ¢t T Jko 7] s 1T on= k nJHO(])(iBnk)
(52)

v,
Y e hK”-uKL‘(L)Z(E)Z] m_J "‘-uK“(i)p—c— ikr ; B "¢ ° i =
j e/ VT M ™ IpcHOGIgE

s T -0 M| () (ig
(o} nk

(53)




23.

The above equations are identical in form to their rigid ring counterparts,
equations (34) and (35).

The interface boundary condition, equation (16b), which yields
the required additional set of simultaneous equations, can be recast by

using equations (20, 45 and 51). Thus

(m "
m T ® m nkMl i) fik
“jk = Thrac nEo “njfnk s n Mg Lk 2 (EL)Z+(L2(£TL)2] -
Bkt Prk ) ‘s Cr) !
(2) )
m T o m 7okt (7nk) ij
R S . (55)

The solution of the set of simultaneous equations (52-55) yields

7nkHI(])(7nk)

z {0+ -t (2 R
e ‘ ’ iBnkH](])(iBnk)
(1)
H (r..) c .T
0 o nk nj
- @) ) (f—s>2(-‘$‘t)2 e

Ho(])(iBnk)

(continued on next page)
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0t e (9202
= {1 - L 2 I (56)
w2- (5% ()2 ED
S r

and
)
w AL R O
2 {0+ wctudt (2 E ) " "
"0 ’ iBnkH](])(iBnk)

@)
HO (7 k) anT
- ) (9 M " e
S S .
Ho ' (B, )

T 2 2
[ K -hK (=) ('—‘%E) ]
= - {1 - — 2 T }J.'E (57)
w*2- (D% (B (ED %)
S r

Equations (52-55) correspond to the rigid ring equations (34-37). As in

the rigid ring solution, equation (56) represents an infinite set of algebraic
equations in the coefficients An? (n=0,1,2,+++w; k=1,3,5,""*=) which must be
solved by truncation. Once having obtained these values they are substituted
into equations (54) and (55) and the final expressions for the coefficients
ﬁjz, njﬂ are obtained. As in the case of the rigid ring it can be shown that

. m  .m
since Ijk = ij then
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Thus the final expression of equation (45) is

© o . dkrT
u (1) =2 % [T Re("e T )X .(x)] (58)
" ez s J

A similar form can be used for the expression of Fm(T).
Finally, the solution for the mth component of the asymptotic

expansion of the radial displacement is

- - _ ikt
w (o) =2 3 [% Re(the ' OIX ()]
k=1,3,5 j=1 ] J

_ kgt
Re (Ijnl:e T )xJ. (x) ] (59)

co

2

[ £

z
1235 iz (D22 EH2) I
S r
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Vi. APPROXIMATE SOLUTIONS

A. Plane Wave Approximation

By assuming that each element of the shell radiates a plane wave
into the surrounding medium, an assumption accurate for small time, the

acoustic field equation can be reduced to

Y r(r:X)T) = = CP,T(V;X;T) (60)

2

At the shell-fluid interface the boundary condition therefore becomes

1
W)T(X)T) = T ac CPJT(];X:T) (61)
Substituting equation (61) into the shell equation (2) we obtain the

following uncoupled relation

b hKL*(CC—) 2, = 4

S

w + 4K

5 XXXX (%)_l [POH(T) - pCZW, ] (62)

T

Noting the identity (38), we may write equation (62) as

p P
T R e M T LI B
s s s

w
3 XXXX
s

Assuming a solution of Eq. (63) in the form

w(x,Tt) = ; T, ()X, (x) (64)

i=1
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we have that

M
. I TR C.
T. + (T, + 4+——7T. = —— 65
i h o i hKu(Egﬁz i “Kh(EEQZ (65)
S S
and
(66)

baPo 2
4K (h)ES = if CiXi(x)

b aPo b sink.L
Ci = bk (F)Ez cosA. L (67)
xiL[(coshXiL

)2+l]

The solution of Eq. (64) which satisfies the stationary initial conditions

(4) is
r.7 FraT
ryr C. 1 2 (ry=r,)
T, = ( ]-2 ) un r [e _ & + ] r2 ] (68)
! 172 (h, 44K a 2 201
where
)
(69)

r2 c
s

I‘] P P
| E @2 )?
{ } =tz @G 2 QTG - T

Finally, the complete solution is
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(r]'rz) cosh. L
- - + ] (cosh.x-
i=1 (r] r2) (xih+hKu) " Fa Fal | coshkiL

coshhix)]

(70)

B. Cylindrical Wave Approximation

If it is assumed that each element of the shell radiates a cylin-
drical wave into the surrounding fluid, the acoustic field equation (5) can

be replaced by Haywood's approximate relation]]

9 —
9 (rsx,7) = = 9 (r,x,7) - =2 0(r,x,7); g, = 0.363 ()
2 J
The interface boundary condition (7) then can be written
'I —
W’T(X;T) = = a—c_ [(P,T(]}XJT) + go(P(])x:T)] (72)

We denote the Laplace transform of a function h(t) as

©

h(s) = [ e h(r)ar (73)
0
and thus express the transform of the shell equation (2) and of the inter=
face boundary condition (72) as

- - P pc
e S ET - AR (= 590,%,9) ] (T4)

S
S S

+ LK

w
9 XXXX

and
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sw = - 'alé (s + 9.)8(1,x,5) (75)

The elimination of ®(1,x,s) between equations (T4) and (75) yields

- - P 2=
+ k¥ + uK“(CL)Zszw - uK“(ﬁ)E—° (L. prew

0 ] (76)
s s (s+go)

w
§ XXXX

Upon re-arranging terms and taking note of the identity (38), we may rewrite

the above as

2

" F a0+ s2(92 4 + @) )( <)? ]w—hK()( )() (77)
h

5 XXXX cg C (s +90

The solution to equation (77) is

W= T W (s)X () (78)
i=1
where
P 9 c

) A @ ED 2+ 1) (D
Wo(s) = > " (19

5 2- . P oa 201 e My a7 (S92 4oy

s” + s [go+ (ps)(h)]+s(c) []+m<u]+go(c L1 +m
and

4 sinXiL

i cosA. L 2

L (=)

i coshXiL + 1]

The partial fraction expansion of equation (7T9) is



(g5 * Ry)
+
R](R]-Rz)(R]-RE)(s-R])

_ P, 9
i () = ) 6 (2%- lelzf*z =

(g, + R}) (g, * Rs)
* Ry (RyRy) (RyRy) (5-R,) * R3(R3-R])(R3-R2)(5-R5)]

where the Rk's (k = 1,2,3,) are the roots of

3, 2.~ P a ©5.2 >“ilF - 5.2 k;u
s+ s [g + ()P + (A1 + Tl g, (1 +—xl=0

o o h ¢ 4K ° ¢ b
Upon noting that

= L e
R] + R2 + R3 = - [9o + (ps) (h)]
Cs 2 >"il‘
fiRe * RiRs + RoRs = (T + =]
N

- Ssi2.. M
RiRpR5 = - 3,0 +l+—KE]

we may express the inverse of Eq. (80) as

_ RnT
3 (g +R)e
5 o] n

p o
W) = A O D - )
S 1

2 —
n=1 GR “ + 2I'\R_+ 33 T.

where

30.

(80)

(81)

(82)

(83)

(84)



31.

The final solution can therefore be written as follows

R T
- n
® P S 3 (g +R e cosh. L
w(x,7) = & {Ai(ﬁO(EQ)(:éo [%"- z 20 o — ](coskix- Eggﬁi_f coshxix)}
i=1 s i n=1 GRn +2I"iRn+5g01'"i i

(85)
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VIl. NUMERICAL CALCULATIONS

All calculations were performed on the IBM 7040 computer located
at the Polytechnic Institute of Brooklyn. The physical properties used

were

c P
(%) = 87% ; v = 0.3, (C—r)2 =1, (5—-) = 0.13054 , (Ci)2 = 0.08815 (steel shell
S S S

immersed in salt water),
while L was varied.

The infinite set of linear algebraic equations (40) in the unknowns
Agk were solved by assuming a forcing function period 2T, truncating the
system and then solving the resulting finite number of equations. The
deflection w was found by substituting the Ask's into equation (36) and
then using equation (4l4). A similar procedure was used to solve equation
(56), (54) and (59) for the higher order terms. For all cases 6 terms in
space and 41 in time was found adequate to ensure accuracy.

As previously noted, if the system under investigation has a
damping mechanism which brings it to a state of rest in a period of time
:r then T must be chosen so that T/2 > :r' Conditions of zero velocity
and displacement will therefore be obtained at times Ty = nT (n = integer).
The amplitude of the displacement immediately following the times at which
zero velocity and displacements occur will then represent the desired
""transient'' dynamic response, and will be valid for a period of time equal
to T + T/2. {f the vibration of the system contains undamped components,
that is if the response degenerates into a periodic motion having a period

T, the initial conditions of zero displacement and velocity will be satis-

fied if T/2 > n;; (n = integer) where nT is at least as great as the time
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necessary for decay of the transient motion]u.

For the rigid ring problem (B = 0) an assumed forcing function
half period T > 12 was found to result in a solution which satisfied jnitial
conditions. For the second term in the power series, (B # 0) a half period
of T = 14.928 was found to be sufficient to ensure zero initial velocity
and displacement. This value corresponds to 8: where T is the period of
undamped motion in the second term. Since any value for T above 12 was

adequate for the rigid ring solution T = 14.928 was used for all cases.
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VIili. DISCUSSION OF RESULTS

The time history of the mid span deflections of rigid ring
reinforced cylindrical steel shells immersed in sea water [(c/cs)2=0.088l5]
are presented in Figures 3 and 4 for ring spacings 2L = 0.3321 and 6.0. The
solutions exhibit damped responses thereby indicating that energy is radia-
ted into the fluid far field. The exact solutions over a wide range of bay
lengths are presented in Fig. 5.

In a previous investigation by Herman and Klosnerlz, in which a
reinforced shell was suddenly subjected to an increased pressure (having
harmonic spatial variation in the axial direction) of the surrounding fluid,
it was shown that the shell response could be decomposed into radiating
and nonradiating components. When the nonradiating component was large,
it was found that the characteristic response obtained from the cylindrical
(C) and plane wave (P) approximations were quite different from those ob-
tained from the exact solutions.

2

It has also been shown that no far field radiation occurs when
the shell wavelength is smaller than the fluid wavelength, while energy is
radiated to the far field when the shell wavelength is the larger of the two.
For the nonradiation case, an axial flow from the adjacent compressed and
rarified regions of the pressure field takes place. At high frequencies
(short fluid wavelengths) sufficient time is not available for this type

of flow to occur, and as a result energy is radiated into the far fie]d]6'
For the rigid ring case considered here, in which the initial

pressure is independent of the axial coordinate, there are no adjacent

compressed and rarified regions along the axis of the shell and therefore a
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nonradiating mode cannot be activated. One might then assume, that the use

of the approximate acoustic field equations would yield results with similar

characteristics to those obtained from the exact solution (see Figs. 3 and 4).
Computer storage and time limitations limited the investigation

of the higher order terms of the series expansion. The results obtained

by including only the first two terms of the expansion are presented in

Figure 6 for a ring spacing 2L = 0.3321. It is seen that the first term

of the expansion (rigid ring term) exhibits a damped response, while the

second term is periodic, with a frequency equal to that of the breathing

mode of the ring. An investigation of the mode shape associated with the

second term (Fig. 7) reveals that it oscillates about its equilibrium

position in a manner tha induces adjacent compressed and rarified regions

in the fluid. In addition, the fluid wavelength is much greater than the

shell wavelength. Thus, it is not unexpected to find that the steady-

state component of the second term is periodic and radiates no energy

into the far field.



10.

11.

12.

36.

IX. REFERENCES

Bleich, H.H.: Approximate Determination of the Frequencies of Ring
Stiffened Cylindrical Shells. Contract No. Nonr 266(08), Tech. Rep.
No. 14, Columbia University, 1955.

Gondikas, P.C.s+ Vibrations of Ring Stiffened Shells. Contract No.
Nonr 266(08), Tech. Rep. No. 13, Columbia University, 1955.

Galletly, G.D.: On the In-Vacuo Vibration of Simply-Supported, Ring-
Stiffened Cylindrical Shells. Proceedings of the Second National
Congress of Applied Mechanics, 1954, pp. 225-231.

Garnet, H. and Goldberg, M.A.: Free Vibrations of Ring=Stiffened
Shells. Contract Nonr-3465(00)FBM Research Report RE-156, Research
Department, Grumman Aircraft Engineering Corporation, 1962.

Bleich, H.H. and Baron, M.L.: Free and Forced Vibrations of an In-
finitely Long Cylindrical Shell in an Infinite Acoustic Medium,
J. Appl. Mech., Vol. 21, 1954, pp. 167-177.

Junger, M.C.: Dynamic Behavior of Reinforced Cylindrical Shells in a
Vacuum and in a Fluid, J. Appl. Mech., Vol. 21, 1954, pp. 35-41.

Baron, M.L.: A Further Study of the Response of an Eiastic Cylindrical
Shell to a Transverse Shock Wave, Proc. Second U.S. National Congress
Appl. Mech., 195k,

Mindlin, R.D. and Bleich, H.H.: Response of an Elastic Cylindrical
Shell to a Transverse, Step Shock Wave, J. Appl. Mech., Vol. 20, 1953,
pp. 189-195.

Carrier, G.F.: The Interaction of an Acoustic Wave and an Elastic
Cylindrical Shell, Contract Nonr-35810, Tech. Rep. No. 4, Brown
University, 1951,

Payton, R.G.: Transient Interaction of an Acoustic Wave with a
Circular Cylindrical Shell. Journal Acoustic Soc. of Amer., Vol. 32,

1960, pp. 722-729.

Haywood, J.H.: Response of an Elastic Cylindrical Shell to a Pressure
Pulse, Quart. Journ. Mech. and Applied Math., Vol. X, Part 2, 1958,
pp. 129-141. '

Herman, H. and Klosner, J.M.: Transient Response of a Periodically Sup-
ported Cylindrical Shell lmmersed in a Fluid Medium, J. Appl. Mech.,
Vol. 32, 1965, pp. 562-568.



13.

15.

16.

37.

Garnet, H. and Crouzet-Pascal, J.: The Transient Response of a Circular
Cylinder of Arbitrary Thickness, in an Elastic Medium to a Plane
Dilatational Wave, Grumman Research Department, Memorandum RM-290J,

July 1965.

Klosner, J.M. and Berglund, J.: A Steady-State Formulation for the
Transient Response of a Reinforced Cylindrical Shell Immersed in a
Filuid Medium, accepted for publication J. Appl. Mech.

Bisplinghoff, R.L.; lsakson, G., and Pian, T.H.H.! Methods in
Transient Stress Analysis. Journal of the Aeronautical Sciences,
Vol. 17, 1950, pp. 259-270.

Watson, G.N.: A Treatise on the Theory of Bessel Functions,
second edition, Cambridge University Press, Cambridge Engiand, 1944,

p. 74.

Skudrzyk, E.J.: Vibration and Sound Radiation of Plates and Cylindrical
Shells, Part ll1--Sound Radiation of Plates, Cylinders and Complex
Vibrators. Ordnance Research Laboratory, Pennsylvania State University,

1965.



written:

where

The free vibration solution to Eq. (A-1) is

where

and

APPENDIX A

EIGENFUNCTIONS AND FREQUENCY EQUATION FOR

RIGID RING-STIFFENED SHELL IN VACUO

38.

The Donnell equation governing free vibration in vacuo can be

w + hKhw + hKa(Ji)ZW
c 5T

5 XXXX
s

W,X(O’T) = W,xxx(o’T) = W,X(L’T) = w(L,t) = 0

iu)j’r
wix,t) = Xj(x)e

]

T

0

(A-1)

(A-2)

(A-3)

(A-b)

(A-5)
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The solution of Eq. (A-4) which satisfies the boundary conditions (A=2)

yields the eigenfunctions

cosA. L

- ] . .o e -
Xj(x) cosij coshkjL coshij (j=1,2,3, ) (A-6)

and the following transcendental equation from which the eigenvalues are

obtained
taanL + tanhXjL =0 (A=T)

In a routine manner one can show that the eigenfunctions are

orthogonal in the interval O-L, i.e.,

cosxiL 2
L M o) ] S
[% 0%, () ax = | (A-8)
o

0, i #j



APPENDIX B
STATIC SOLUTION OF RING-SUPPORTED SHELL

The differential equation of the shell can be written

P
WV )+ uktw(x) = u* (@2

s

where the boundary conditions are
wx(O) = w,xxx(o) = w’x(L) = C
w(L) = Bw,xx (L)

X

The general solution to equation (B-1) satisfying boundary

conditions (B-2) is

(cosKLsinhKL=-sinKLcoshKL) sinkx sinhKx
HK5B(sinh2KL+sin2KL)+sinKLcosKL+sinhKLcoshKL

P
wix) = @) I

(sinKLcoshKL+cosKLsinhKL) cosKx coshKx

- + 1]
MKBB(sinthL+sinZKL)+sinKLcosKL+sinhKLcoshKL

Lo.

(B-1)

(B-2)
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